Let C be a simple closed curve on S and denote by z the "Dehn twist "along C

Let H, and Hz be handlebodies obtained
as regular neighbourhoods of T, and Tz
For he Mg, denote by M 3-manifold obtained
by gluing H, and Hz by h:
$$\partial H_1 \rightarrow \partial H_2$$

(onsider
 $\mathbb{R}^2 \times \mathbb{E} \subset \mathbb{R}^3 \cup \{\infty\}$
and take link
 $L \subset \mathbb{R}^2 \times \mathbb{I}$, $L \cap (T, \cup T) = \emptyset$
such that Dehn surgery on L gives M.
 $\rightarrow L = L(L)$,
 T , together with T_2 and $L(L)$ form
 $a(2g, 2g)$ framed tangle.
For example, we get for the Kickorish gener.:
 $\overrightarrow{A_1}$

-> denote the resulting (29,29)-tangle
by T(h)
Choose coloring
$$m_1, \dots, m_q$$
 for T, and
 v_1, \dots, v_q for T_2 as shown above
Choose coloring $n: \{1, 2, \dots, m\} \rightarrow P_r(k)$
for components of $L(h)$
 \rightarrow obtain tangle operator
 $J(T(h|i\lambda)_{nr}: V_{n_1}, \dots, v_{q_r}, v_q) \rightarrow V_{n_1}, \dots, v_{q_r}, v_q)$
and define
 $\rho(h)_{nr} = \{S_{n_1}, \dots, S_{n_q}, \{S_{n_1}, \dots, S_{n_q}, v_q, v_q, v_q\}, x \in \mathbb{C}^{\mathbb{C}(L(h))} \sum_{n_1} S_{n_2}, \dots, S_{n_q}, J(T(h); n)_{nr}$
Define
 $\rho(h): V_{\Sigma} \rightarrow V_{\Sigma}$
by $\rho(h) = \bigoplus_{n_1 n_2} \rho(h)_{nr} \cdot \dots, v_{n_q} \rightarrow (L_{\Delta}) = \mathcal{O}(h)_{nr}$
 $\rightarrow obtain map $\rho: M_q \rightarrow GL(V_{\Sigma})$
 $\rho(h)$ depends only on the isotopy closs of
h and not on the way of expressing h
as product of Lickorish generators.$

For x,y
$$\in$$
 Mq, consider links $L(x), L(y)$
and $L(xy)$ and set
 $\overline{f}(x,y) = C^{-(xy)-\sigma(x)-\sigma(y)}$
Then the above implies
Proposition 4:
The above map $\rho: Mq \rightarrow GL(V_x)$ satisfies
 $\rho(xy) = \overline{f}(x,y)\rho(x)\rho(y)$
for any x,y \in Mq. Thus, ρ is a projectively
linear rep. with 2-cocycle \overline{f} .
"2-cocycle": $\overline{f}(xy,z)\overline{f}(x,y) = \overline{f}(x,yz)\overline{f}(y,z)$
which follows from
 $\rho((xy)z) = \rho(x(yz))$
In the case $g=1$, $M_1 \cong SL(2,\mathbb{Z})$ and
dim $V_z = K+1$ with basis $\overline{f}(x_x)$
The action ρ of $SL_2(\mathbb{Z})$ on basis $\overline{f}(x_x)$
is given by $Su_x = \sum_{n=1}^{\infty} S_{nn} u_n$
 $Tu_n = \exp(2\pi \overline{f}(-\overline{f}(\Delta_n))U_n$

Basis of
$$V_z$$
:
• correspond to admissible coloring of different
trivalent graphs
• related by connection matrices of KZ-eq.
Take particular basis corresponding to T'
- neighborhood of T' in R' gives
a handlebody H of genus g
 $\rightarrow \partial H = \Sigma$
For e edge in T', set
 $D(e) = \partial D(e)$
 $- Dehn twist along C(e) acts diagonally
 $m T' - basis$
Set a: Edge (T') $\rightarrow P_t(R)$
 $- p(T_{C(e)}) U_a = exp(-2\pi) T - Da(e) U_a$
For example, in the previous graph, X,
 $\delta_{21} - \cdots, \delta_{2r}$ diagonalized simultaneously$

Witten's invariants:
Jet M be closed ariented 3-infd. obtained
by gluing two handle bodies:
M= Hq Un (-Hq),
h: 2Hq -> 2Hq, he Mq
"Heegaard splitting"
Proposition 5:
Jet M= Hq Un (-Hq) be a Heegaard splitting
of a closed oriented 3-manifold M. Then,
the Chern-Simona partition function of M is

$$Z_{K}(M) = S_{00}^{-11} \langle U_{0}^{*} | P(h) U_{0} \rangle$$

where U_{0}^{*} is the dual element of U
in Vz and <1> is the canonical
pairing between Vz and Vz.
Now, add a 1-handle to Hy to obtain Hyri:
 $U_{1} = \int_{0}^{1} \int$

Extend he Mg to
$$\tilde{h} \in M_{g+1}$$
 so that
 $\tilde{h}(d) = \beta \longrightarrow H_{g+1} \cup_{\tilde{h}} (-H_{g+1})$ is connected
sum of $M = H_g \cup_n (-H_g)$ and S^3
 \rightarrow homeomorphic to M
"elementary stabilization"
two Heegaard splittings $H_g \cup_n (-H_g)$
and $H_g \cup_{h'} (-H_g)$ are equivalent if
 $h' = h, \circ h \circ h_2, \quad h, h_2 \in M_{eq}$
(extended to H_7)
 $\rightarrow S_{oo}^{-g+1} \langle \upsilon^* | \rho(h) \upsilon_o \rangle = S_{oo}^{-g'+1} \langle \upsilon^* | \rho(h') \upsilon_o \rangle$
follows from
 $\langle \upsilon^*_o | \rho(\tilde{h}) \upsilon_o \rangle = S_{oo} \langle \upsilon^*_o | \rho(L) \upsilon_o \rangle$